
Understanding the Impact of Refactoring on Smells:
A Longitudinal Study of 23 Software Projects

Diego Cedrim
PUC-Rio, Brazil

dcgrego@inf.puc-rio.br

Alessandro Garcia
PUC-Rio, Brazil

afgarcia@inf.puc-rio.br

Melina Mongiovi
UFCG, Brazil

melina@copin.ufcg.edu.br

Rohit Gheyi
UFCG, Brazil

rohit@dsc.ufcg.edu.br

Leonardo Sousa
PUC-Rio, Brazil

lsousa@inf.puc-rio.br

Rafael de Mello
PUC-Rio, Brazil

rmaiani@inf.puc-rio.br

Baldoino Fonseca
UFAL, Brazil

baldoino@ic.ufal.br

Márcio Ribeiro
UFAL, Brazil

marcio@ic.ufal.br

Alexander Chávez
PUC-Rio, Brazil

alopez@inf.puc-rio.br

ABSTRACT
Code smells in a program represent indications of structural quality
problems, which can be addressed by software refactoring. However,
refactoring intends to achieve different goals in practice, and its
application may not reduce smelly structures. Developers may
neglect or end up creating new code smells through refactoring.
Unfortunately, little has been reported about the beneficial and
harmful effects of refactoring on code smells. This paper reports a
longitudinal study intended to address this gap. We analyze how
often commonly-used refactoring types affect the density of 13
types of code smells along the version histories of 23 projects. Our
findings are based on the analysis of 16,566 refactorings distributed
in 10 different types. Even though 79.4% of the refactorings touched
smelly elements, 57% did not reduce their occurrences. Surprisingly,
only 9.7% of refactorings removed smells, while 33.3% induced
the introduction of new ones. More than 95% of such refactoring-
induced smells were not removed in successive commits, which
suggest refactorings tend to more frequently introduce long-living
smells instead of eliminating existing ones. We also characterized
and quantified typical refactoring-smell patterns, and observed that
harmful patterns are frequent, including: (i) approximately 30%
of the Move Method and Pull Up Method refactorings induced the
emergence of God Class, and (ii) the Extract Superclass refactoring
creates the smell Speculative Generality in 68% of the cases.

CCS CONCEPTS
• Software and its engineering→ Software evolution;

KEYWORDS
Refactoring, Code Smells, Structural Quality

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106259

ACM Reference Format:
Diego Cedrim, Alessandro Garcia, Melina Mongiovi, Rohit Gheyi, Leonardo
Sousa, Rafael de Mello, Baldoino Fonseca, Márcio Ribeiro, and Alexander
Chávez. 2017. Understanding the Impact of Refactoring on Smells: A Lon-
gitudinal Study of 23 Software Projects. In Proceedings of 2017 11th Joint
Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, Paderborn,
Germany, September 4–8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106259

1 INTRODUCTION
Code smells represent indications of software structural problems
in a program [8]. Several types of code smells are recognized as
critical by software developers [25, 36]. Examples of such smell
types includeGod Class, LongMethod and Speculative Generality [17,
25, 36]. Thus, code smells may suggest structures in the source
code that require refactoring [8]. Refactoring is a common practice
employed by practitioners along software maintenance [22, 29].
Refactoring is a program transformation used for improving the
structure of a program while preserving its observable behavior [8].
Examples of commonly applied types of refactoring involve [22]:
(i) restructuring or moving class members, such as Extract Methods,
Move Method and Pull Up Method, and (ii) extracting new elements,
such as Extract Superclass and Extract Interface.

The goals of refactoring widely vary in practice [3, 14, 27]. Refac-
toring goals include combating design degradation, reducing main-
tenance effort, and facilitating feature additions or bug fixes [3,
14, 27]. In order to achieve these goals, developers apply two tac-
tics during refactoring [22], namely root-canal refactoring and floss
refactoring. Root-canal refactoring is used for strictly improving the
source code structure and consists of pure refactoring. Floss refac-
toring consists of refactoring the code together with non-structural
changes as a means to reach other goals, such as adding features or
removing bugs.

Independently of refactoring tactic employed, the increase of
code smells in a program is harmful. The increased density of code
smells often relates to design degradation [17, 19, 24, 34], fault
proneness [13, 26], and higher maintenance effort [9, 35]. However,
as floss refactoring is often applied [22], developers may often end
up introducing, rather than reducing, code smells. Even in situations

465

https://doi.org/10.1145/3106237.3106259
https://doi.org/10.1145/3106237.3106259

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa,

R. de Mello, B. Fonseca, M. Ribeiro, and A. Chávez

where root-canal refactorings are performed, developers may either
fail to remove a smell or introduce new ones.

Unfortunately, the impact of refactoring on smells is rarely in-
vestigated in depth. To the best of our knowledge, there is no study
that thoroughly characterizes both positive and negative effects
of refactoring on code smells. Only recently, Bavota et al. [3] per-
formed a study aiming to investigate if refactoring tends to remove
code smells in the context of some major versions of only three
software projects. However, they could not reveal to what extent
and which types of refactorings often increase, rather than decrease,
code smells in a program. Moreover, they did not make a distinction
between root-canal and floss refactoring in their analyses. Finally,
given the nature and size of their sample, they could not character-
ize recurring relationships between refactoring and smell types.

Thus, we conduct a longitudinal study that analyzes both the
beneficial and negative impact of refactoring changes on the density
of smells. We analyze not only if refactoring reduces smells, but
also if and to what extent specific types of refactoring are often
related to the introduction of new smells. Instead of being limited to
the analysis of a few major versions in a few projects, we consider
113,306 versions distributed among 23 open source projects. We
classify each refactoring instance according to its interference on
the existing and new smells located in the refactored elements.
In our study, we classify a given refactoring instance in one of
the three cases: (i) positive if the absolute number of smells in the
elements decreases after the program transformation; (ii) negative if
it increases; or (iii) neutral if it remains the same. This classification
is used to analyze whether certain refactoring types tend to improve
or decrease the smelly structure of a program. This analysis was
also performed in samples of root-canal and floss refactorings.

We identified and analyzed 16,566 refactorings classified in 10
commonly used [22] refactoring types. Thirteen code smell types
are used to classify the collected refactorings. These code smell
types were selected because they are conceptually associated with
the definition of the refactoring types [8], i.e., the definition of
each refactoring type is explicitly associated with one or more code
smells addressed in our study. Surprisingly, our study revealed that
either neutral or negative effects of software refactoring are much
more frequent than positive effects. In particular, we derived the
following new findings as compared to previous studies.

Refactorings often touch smelly elements, but they are
neutral. The aforementioned study [3] found 42% of the refactor-
ings touched smelly elements in their smaller sample. We observed
a higher frequency in our sample: approximately 80% of the refac-
torings touched smelly elements. This frequency was consistent
across the majority of the refactoring types. Moreover, 57% of the
refactorings are neutral. Surprisingly, even root-canal refactorings
often did not reduce the density of code smells in the refactored
elements. These findings suggest developers need more guidance to
remove a code smell once they start restructuring a smelly element.

Stinky refactorings.We found 33.3% of refactorings are stinky,
i.e., they were negative refactorings, which were related to the in-
troduction of new smells. Such refactorings occurred three times
more frequently than positive ones. Only 9.7% of refactorings re-
moved smells. We also concluded that more than 95% of refactoring-
induced smells were not removed afterwards in successive commits.
Stinky refactorings were also surprisingly frequent in root-canal

refactorings, i.e., when developers perform pure refactoring. These
findings shed light on how refactorings, if intended to improve
program structure or not, may degrade the smelly structure of
a program. In particular, it seems developers should be at least
warned of smells being introduced along root-canal refactorings.

Harmful refactoring-smell patterns. We characterized and
quantified recurring patterns related to the beneficial, neutral and
harmful effects of specific refactoring types on code smells. Harm-
ful patterns were more frequent than beneficial ones. For instance,
refactorings intended at moving methods – such as Move Method
and Pull Up Method – tended to induce the emergence of God Class
in the target class without removing smells in the source class. The
Move Method refactoring induced the emergence of God Classes in
35% of the cases, while the Pull Up Method tended to be related to
this smell type in 28% of the cases. Several other types of refactoring
were surprisingly often related to smells emerging after the trans-
formation. For instance, the Extract Superclass refactoring creates
the Speculative Generality smell in 68% of the cases.

This work is organized as follows: Section 2 provides basic con-
cepts. Section 3 presents the study planning. Sections 4 and 5 present
our results. Section 6 describes the threats to validity. Section 7 re-
lates our study with previous work. Section 8 concludes the study.

2 CONCEPTS AND MOTIVATION
A smell is a surface indication that usually corresponds to a deeper
structural problem [8, 10, 17, 20, 23]. For instance, a class with sev-
eral responsibilities is known as God Class. This smell makes the
class hard to read, modify and evolve. Let us suppose a Person class
that has, amongst many other members, at least three attributes
representing two loosely-coupled concepts: person and telephone
number. This structure of Person can be considered a God Class.
In order to remove this smell, the developer can extract part of
the class structure into another class: TelephoneNumber. After this
transformation, called Extract Class refactoring, the program no
longer has the God Class and still realizes the same functionality.
After this refactoring, the number of code smells would be reduced.
However, it might be not always the case that refactorings are suc-
cessful in removing smells. Even worse, a new code smell can be
introduced by refactoring. For instance, suppose that a developer
tried to generalize the Person class. So, he applied an Extract Super-
class refactoring in the Person class, creating its superclass called
LivingBeing. However, this generalization was never explored, so
the developer created a smell, called Speculative Generality, via
refactoring. There has been little effort to characterize these oc-
casions, which happen on a non-ignorable frequency, as we can
observe in Section 5.2.

2.1 Refactoring Classification
This section presents a scheme [5] to classify each refactoring
instance by computing the number of smells introduced or re-
moved along the refactoring changes. Let S = {s1, · · · , sn } be a
set of software projects. Each software s has a set of versions
V (s) = {v1, · · · ,vm }. Each version vi has a set of elements E(vi) =
{e1, · · ·} representing all methods, classes and fields belonging to
it. In the previous section, the set S = {PhoneBook} represents a
software system, called PhoneBook . This software has two versions

466

Understanding the Impact of Refactoring on Smells:
A Longitudinal Study of 23 Software Projects ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

V (PhoneBook) = {v1, v2}, where v1 is the version before the refac-
toring and v2, after. Finally, each version vi has a set of elements
E(vi). For instance, E(v2) is composed of Person and TelephoneNum-
ber classes (Section 2), including their methods and fields.

In order to be able to detect refactorings, we must analyze trans-
formations between each subsequent pair of versions. In this way,
we assume R is a refactoring detection function where R(vi ,vi+1) =
{r1(rt1; e1), · · · , rk (rtk ; ek)} gives us a set of tuples composed of
two elements: the refactoring type (rti) and the set of refactored
elements represented by ei . So, the function R returns the set of
all refactorings detected in a pair of versions. Thus, R(v1,v2) =
{r1(Extract Class, e1)}, where e1 = {Person,TelephoneNumber }.

Refactored Elements. In this work, we consider as refactored
elements all those directly affected by the refactoring. For instance,
let us consider the Move Method refactoring. In this refactoring
type, a methodm is moved from classA to B. Hence, the considered
refactored elements, in this case, are {m,A,B}. All callers of m
are indirectly affected by this refactoring, but we do not consider
them as refactored elements. Similar reasoning applies to the other
refactoring types; thus, for each refactoring type, a different set of
refactored elements is used. The complete list of what is considered
refactored elements for all refactoring types is available at [4].

CS is a code smell detection function whereCS(ei) = {cs1, · · ·} re-
turns a set of code smells present in a set ei of software elements.We
only analyze code smells related to the refactored elements. In this
way, we can say thatCSb[r](ei) is the set of code smells of ei before
the application of the refactoring r . On the other hand,CSa[r](ei) is
the set of code smells found after the application of r . Considering
the aforementioned r1 refactoring, we have: CSb[r1]({Person}) =
{God Class}, CSa[r1]({Person,TelephoneNumber }) = ∅.

Positive, Neutral and Negative Refactorings. Using data col-
lected by the functions defined before, it is possible to classify a
refactoring by looking how it interferes in existing code smells.
Suppose ei is a set of software elements, r is a refactoring and
|CSb[r](ei)|= x . After r refactoring, |CSa[r](ei)|= y. Depending on
x and y, it is possible to classify r . If x > y, r reduced the num-
ber of smells on ei and, because of that, r is considered a positive
refactoring. Otherwise, if x < y, r increased the number of smells
on ei ; thus, r is a negative refactoring. When x = y, r is a neutral
refactoring. For instance, |CSb[r1](e1)|= 1 and |CSa[r1](e1)|= 0. Thus,
the r1 refactoring performed in PhoneBook system is a positive one.

2.2 Refactoring-Smell Patterns
We determine the relationship between each refactoring instance on
the removal or addition of a code smell. Moreover, the refactoring
classification process can also reveal to what extent andwhich types
of refactorings often increase, rather than decrease, the number
of code smells in software projects. This classification enables us
to characterize recurring relationships between code smells and
refactorings. For instance, if theMoveMethod refactoring introduces
God Class frequently, is possible to infer that there is a pattern
governing these two types. We use a threshold-based rule to state
a relation between refactoring and smell types as patterns.

LetK = {r1, r2, · · · , rn } be the set of all detected refactorings after
analyzing the set S . Thus, Kr t is the subset of K of refactorings of
the type rt . The set K+

r t,cs is the K subset composed of refactorings

of the type rt that added code smells of type cs in any refactored
element, while K−

r t,cs is the K subset that removed code smells of
type cs . Finally, K∗

r t,cs is the K subset composed of refactorings of
the type rt that satisfies the following conditions: (i) the refactoring
was applied in classes or methods containing at least one code smell
instance of the type cs; and (ii) the refactoring did not remove the
instance of the code smell of cs type.

Applied in Smelly Code. e is a smelly element if and only if
CS(e) ̸= ∅. Consider r = {rt ; e}. We say r was applied in program
elements hosting at least one code smell if any element belonging
to e is a smelly element, i.e., r is Applied in Smelly Code if and only
if there is a code smell of any type in the refactored elements.

Creational Patterns. The definition of creational pattern be-
tween types of code smell and refactoring can be established using
the above notation. A creational pattern occurs when a specific
refactoring type involves code transformations that often intro-
duces a specific code smell. We define this concept as a threshold-
based rule. If |K+

r t,cs |/|Kr t |≥ γ , is possible to affirm that there is a
creational pattern between rt and cs . This kind of pattern captures
scenarios where developers apply a refactoring and, somehow, end
up creating at least one new code smell. Thus, creational patterns
represent cases of stinky refactorings.

Removal and Non-Removal Patterns. The definition of re-
moval pattern also lies in a threshold-based rule. If |K−

r t,cs |/|Kr t |≥
γ , we can affirm that there is a removal pattern between rt and cs .
It means that developers consistently removes instances of cs when
performing rt refactorings. We are also interested in studying what
types of code smells are commonly present in classes and methods
and, somehow, end up remaining in the source code after refactor-
ing. This third type of pattern is called non-removal pattern and it
is defined by another threshold-based rule: |K∗

r t,cs |/|Kr t |≥ γ .

3 STUDY PLANNING
This section presents the study planning.

3.1 Research Questions
Software refactoring might interfere in the presence of code smells.
As illustrated in Section 2, the number of code smells located in
refactored elements should be ideally reduced. Therefore, our study
aims at addressing the following research question:

RQ1. Does refactoring reduce the density of code smells?

We address this question by relying on the classification of each
refactoring detected in real projects. This procedure enables us to
compute how frequent each refactoring classification occurs across
the projects. First, all instances of refactorings and code smells
present in a set S of software were detected. Then, all refactoring
instances were classified according to Section 2.1. Also, we divided
the refactorings into root-canal and floss refactoring (Section 3.2.3).
Let p the number of refactorings classified as positive; n the number
of negative refactorings; and k representing the number of neutral
refactorings. If n > p and n > k , we can state that the application
of refactorings are likely increasing the number of code smells of
projects. Otherwise, if p > n and p > k , the answer to our research
question is yes, refactorings tend to remove code smells. Another

467

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa,

R. de Mello, B. Fonseca, M. Ribeiro, and A. Chávez

possible case is when k > p and k > n. In this scenario, refactorings
would tend to neither introduce nor remove code smells.

It is also important to understand and distinguish the impact of
specific refactoring types on code smells. Some types of refactoring
might consistently remove (or fail to do so) or even frequently
introduce specific smell types across software projects. Section
2.2 defined three categories of possible patterns between types of
refactoring and smells. Discovering these patterns is the focus of
our second research question:

RQ2:What are the patterns governing types of refactoring
and code smells?

By answering RQ2, we are able to reveal harmful actions made by
developers on refactored elements. We detect removal, non-removal
and creational patterns by analyzing the impact of refactoring types
on smells located in the refactored elements. The knowledge about
non-removal and creational patterns make developers informed
about the possibilities and risks of missing and introducing certain
smells along either root-canal or floss refactorings.

3.2 Study Phases
This section presents all phases of the study design.

3.2.1 Phase 1: Selection of Software Projects. The first step of
this study is to choose a set S of software projects to compose
the study sample. First, we established GitHub, the world’s largest
open source community, as the source of software projects. We
focused our analysis on open source projects so that our study
could be easily replicated and extended. This study uses 23 GitHub
projects that met the following quality criteria: (i) high popularity,
i.e., among the projects with most stars; (ii) active issue tracking
system, i.e., users actively use the GitHub issue management system
for bug reporting and improvement suggestions; (iii) has at least
90% of the code repository effectively written in Java. The full list
of selected projects is in Table 1. This table presents the (i) name,
(ii) lines of code and (iii) number of commits for each project.

3.2.2 Phase 2: Smell and Refactoring Detection. This phase is in
charge of detecting refactorings in all subsequent pairs of versions
vi and vi+1. It also encompasses the detection of all smells in each
version vi ∈ V (s). These activities are described in the following.

Refactoring Detection. We choose Refactoring Miner [30, 31]
to support the detection of refactoring instances. This tool imple-
ments a lightweight version of UMLDiff [33] algorithm for differ-
encing object-oriented models. The precision of 96.4% reported
by Tsantalis et al. [31] led to a very low rate of false positives, as
confirmed in our validation phase (Section 3.2.4). This tool supports
the detection of 11 refactoring types, which are amongst the ones
reported by Murphy-Hill et al. [22] as the most common refactoring
types. All refactoring types detected by Refactoring Miner were
considered in this study, except the Rename Method refactoring. We
discarded this refactoring type as it was not directly related to one of
the code smells addressed in our study. Refactoring Miner gives us
as output a list of refactorings R(vi , vi+1) = {r1, · · · , rk } as defined
before, where k is the total number of refactorings identified.

Code Smell Detection. Code smells are often detected with
rule-based strategies [1]. Each strategy is defined based on a set

of metrics and thresholds. Therefore, the application of rule-based
strategies requires the collection of metrics for all source files in a
project. After the collection of metrics, we apply a set of previously
defined rules [15, 17] to detect code smells. This procedure is the
implementation of CS function defined in Section 2.1. The specific
metrics and thresholds for code smell detection were defined in [17,
18]. These rules were used because: (i) they represent refinements
of well-known rules proposed by Lanza et al. [15], which are well
documented and used in previous studies (e.g., [21, 39]); and (ii)
they have, on average, precision of 0.72 and recall of 0.81 [16].

These rules detect five code smells: God Class, Long Method,
Feature Envy, Shotgun Surgery and Divergent Change. Table 2 shows
examples of rules used to identify code smells. The rules use the
following metrics: (i) Lines of Code — LOC; (ii) Coupling Between
Objects — CBO; (iii) Number of Methods — NOM; (iv) Cyclomatic
Complexity — CC; (v) Lack of Cohesion of Methods — LCOM;
(vi) Fan-out — FO; and (vii) Fan-in — FI. We also considered eight
additional smell types: Complex Class, Lazy Class, Long Parameter
List, Message Chain, Refused Bequest, Spaghetti Code, Speculative
Generality, and Class Data should be Private.

The selection of these smell types was due these code smells
are very common and tend to be related to design degradation
symptoms [17]. Another reason to select these smell types was
their direct relation with the most frequent refactoring types [8].
Murphy-Hill et al. [22] reported the refactorings often performed

Table 1: Projects used

Name LOC Commits

alibaba/dubbo 104,267 1,836
AndroidBootstrap/android-bootstrap 4,180 230
apache/ant 137,314 13,331
argouml 177,467 17,654
elastic/elasticsearch 578,561 23,597
facebook/facebook-android-sdk 42,801 601
facebook/fresco 50,779 744
google/iosched 40,015 129
google/j2objc 385,012 2,823
junit-team/junit4 26,898 2,113
Netflix/Hystrix 42,399 1,847
Netflix/SimianArmy 16,577 710
orhanobut/logger 887 68
PhilJay/MPAndroidChart 23,060 1,737
prestodb/presto 350,976 8,056
realm/realm-java 50,521 5,916
spring-projects/spring-boot 178,752 8,529
spring-projects/spring-framework 555,727 12,974
square/dagger 8,889 696
square/leakcanary 3,738 265
square/okhttp 49,739 2,645
square/retrofit 12,723 1,349
xerces 140,908 5,456

Total 2,982,190 113,306

468

Understanding the Impact of Refactoring on Smells:
A Longitudinal Study of 23 Software Projects ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

by developers and we analyzed which code smell types these refac-
torings may intend to remove [8]. Refactoring Miner is capable of
detecting the refactoring types that remove these smells.

We implemented a tool to detect all the 13 types of code smells [6].
In addition to the rules presented in Table 2, we also implemented
all rules proposed in a recent study [3]. These rules detect the eight
additional types of code smells. The complete list of the rules and
the tool we implemented are available in our study’s website [4].

Table 2: Rules for code smell detection

Code Smell Detection Rule

God Class [(LOC>α) and (CBO>β)] or
[(NOM>δ) and (CBO>β)]

Long Method (LOC>ϵ) and (CC>η)
Shotgun Surgery (CC>θ) and (FO>ω)
Divergent Change (FI >ι) and (LCOM<υ) and (CC>ς)
Feature Envy (FO>ζ) and (LCOM<ϱ) and (CC>ϖ)

Rules for detecting smells play a central role in our study. Thus,
we must guarantee that our results are not biased by a single set of
detection rules. Different thresholds can lead to different results [7,
11]. Therefore, choices of thresholds can pose a threat to this study.
Thus, two sets of thresholds were used to mitigate this menace. The
first set, known as tight set, represents the thresholds previously
validated in the study by Macia et al. [17]. We named this strategy
as tight because it relies on the use of high threshold values aiming
to detect only critical code smells across the projects. The second
strategy, named as relaxed, uses relaxed thresholds designed to
detect as many smells as possible. In addition to the two previously
mentioned (tight and relaxed) set of thresholds, we also used the
detection rules proposed by Bavota et al. [3].

3.2.3 Phase 3: Refactoring Classification. The objective of the
third phase is to classify all refactorings detected in the prior phase.
We classified each detected refactoring by observing its interference
in the number of code smells. After this classification, it is possible
to quantify how frequent refactorings are labeled according to each
possible category in our software set S . As mentioned in Section
3.2.1, all projects are Git repositories stored on GitHub servers.
The data collection process starts by cloning a Git repository. This
study considers as a version every commit in the repository. We
skipped merge commits during the analysis since this kind of com-
mit could lead us to compute twice the same refactoring [31]. The
algorithm always compares subsequent versions of the projects. Let
us suppose a project that has only three commits: 1, 2, and 3. In this
project, the R function would be computed for the following pairs:
R(1, 2) and R(2, 3). The set V (s) of a Git repository s is the list of all
non-merge commits in the master branch ordered chronologically.

Root-Canal vs. Floss Refactoring. There are two tactics of
refactoring [22]: (i) root-canal refactoring; and (ii) floss refactor-
ing. During floss refactoring, the programmer uses refactoring as a
means to reach a specific end, such as adding a feature or fixing a
bug. Root-canal refactoring, in contrast, is used for solely improving
code structure and involves a process consisting of exclusive refac-
toring. In this way, this study comprises a manual inspection of a

randomly selected sample of refactorings. In this manual inspec-
tion, we evaluate if a refactoring is root-canal or floss. We analyzed
manually whether the changes performed during the refactoring do
not modify the behavior. We classify a transformation as floss when
we identify behavioral changes, such as an addition of methods or
changes in a method body not related to refactoring transforma-
tions. When no behavioral changes are detected, we classify the
refactoring as root-canal. This manual inspection will enable us in
revealing the percentage of positive, negative and neutral effects
in the context of both root-canal and floss refactorings (Section
4). This inspection was performed by three researchers. Two of
them are very experienced refactoring researchers. The most expe-
rienced one solved the conflicts. We found that developers apply
root-canal refactoring in 31.5% of the cases. The confidence level
for this number is 95% with a confidence interval of 5%.

3.2.4 Phase 4: Manual Validation. The last phase is responsible
for all data validation. As the first three phases rely on tools to detect
refactorings and code smells, there is a threat to validity related
to false positives and negatives yielded by these tools. To mitigate
this threat, the fourth phase is required. In this phase, a manual
procedure was executed in a smaller dataset. A manual validation
of each output was made in this phase to ensure the reliability of
our data. In this vein, we conduct different data validation activities.

We randomly sampled refactorings from each type to support
the analysis. We decided to sample by the 10 refactoring types since
the precision of the Refactoring Miner could vary due to the rules
implemented in the tool to detect each refactoring type. To ensure
an acceptable confidence level in the results, we calculated the
sample size of each refactoring type based on a confidence level of
95% and a confidence interval of 5 points. We used such confidence
to all sampling activities performed in this study. We recruited
ten undergraduate students from another research group to also
analyze the samples. The samples were divided into ten disjointed
sets, and each student validated a different one. In general, it was
observed a high accuracy for each refactoring type, with a mean of
88.36 %. Details can be found in the study’s website [4].

4 REFACTORING AND SMELLS
This section presents and discusses the data used to answer the first
research question. The refactoring detection procedure identified
16,566 refactorings. Table 3 presents the refactoring types ordered
by the number of their occurrences across the projects analyzed.
The first column shows each refactoring type followed by the corre-
sponding number of its occurrences (second column) in all projects
analyzed. The most common refactoring type is Extract Method,
similarly to a previous study that analyzed refactoring frequencies
in other systems [22]. Table 3 confirms most of the other refactoring
types also occur frequently in our sample.

Most refactorings touch smelly elements. Before addressing
RQ1, we first analyze the frequency of refactoring types that touch
smelly elements. Thus, we also compute how many times each type
of refactoring was applied in smelly code (Section 2.2). The results
are shown in the third column in terms of both absolute number
of occurrences and percentages (in brackets). We can observe that
developers tend to often apply refactorings in smelly elements of a

469

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa,

R. de Mello, B. Fonseca, M. Ribeiro, and A. Chávez

Table 3: The impact of common refactorings types

Refactoring Type Occurences Applied in Smelly Code Neutral Negative Positive

Extract Method 7,517 6,411 (85.2%) 2,917 (38.8%) 3,914 (52.1%) 686 (9.1%)
Move Field 4,356 3,362 (77.1%) 3,784 (86.9%) 438 (10.1%) 134 (3.1%)
Inline Method 1,528 1,134 (74.2%) 732 (47.9%) 214 (14.0%) 582 (38.1%)
Move Method 1,404 1,049 (74.7%) 1,008 (71.8%) 297 (21.2%) 99 (7.1%)
Pull Up Method 629 511 (81.2%) 430 (68.4%) 155 (24.6%) 44 (7.0%)
Pull Up Field 465 333 (71.6%) 338 (72.7%) 103 (22.2%) 24 (5.2%)
Extract Superclass 342 131 (38.3%) 89 (26%) 246 (71.9%) 7 (2.0%)
Extract Interface 133 65 (48.8%) 11 (8.3%) 122 (91.7%) 0 (0%)
Push Down Method 114 98 (85.9%) 76 (66.7%) 11 (9.6%) 27 (23.7%)
Push Down Field 78 58 (74.3%) 62 (79.5%) 13 (16.7%) 3 (3.8%)

Totals 16,566 13,152 (79.4%) 9,447 (57%) 5,513 (33.3%) 1,606 (9.7%)

program. Seven refactoring types have been applied in smelly code
elements in more than 70% of the occurrences (Table 3).

One could wonder if many elements are tagged as smelly in
the analyzed programs, thereby increasing the probability of refac-
torings often touching smelly elements. Then, we computed the
probability of randomly choosing a smelly element in our dataset
(|smelly elements|/|all elements|), which is 0.3%. This low proba-
bility shows that, in our dataset, refactorings did not target smelly
elements by coincidence. Refactorings indeed tend to concentrate
on smelly elements, which were confined to a vast minority of the
program elements. This behavior was consistently observed for
both root-canal and floss refactorings.

4.1 Smell-Neutral Refactorings are Common
The three last columns of Table 3 present respectively the incidence
rate of neutral, negative and positive refactorings. Surprisingly, the
neutral classification was the most frequent one for 7 refactoring
types, namely Move Field, Inline Method, Move Method, Pull Up
Method, Pull Up Field, Push Down Method, and Push Down Field.
Even though refactorings are frequently applied in smelly elements,
they often do not reduce the smells.

The data presented in Table 3 was produced with smell detection
strategies based on a set of tight thresholds. To make sure our
findings were not biased by this particular set of thresholds, we have
also classified the refactorings using relaxed thresholds. Finally, we
have also used another set of detection strategies, the same used by
Bavota et al. [2]. Figure 1 shows the general proportion of neutral,
positive and negative refactorings using all these three classification
methods, labeled as Tight, Relaxed and Bavota.

An analysis of Figure 1 confirms there is indeed a general trend:
independently of the smell detection strategy, neutral refactorings
are much more frequent than positive and negative refactorings.
When we analyze each individual project, the same classification
distribution is observed, i.e., neutral refactorings represent the vast
majority in all the projects. In our manual validation (Section 3.2.3),
we found that 31.5% of the refactorings are root-canal. Even when
this tactic is applied, refactorings often do not reduce the density
of code smells in the refactored elements. These findings suggest
developers need more guidance to remove a code smell once they

start restructuring a smelly element, i.e., when they perform root-
canal refactorings.

4.2 Stinky Refactorings
Surprisingly, 33.3% of the refactorings were found to be stinky
(Table 3); they are related to an increase of smells in the refactored
elements. Moreover, when we analyzed the commits performed
after the negative refactorings, we also concluded that more than
95% of refactoring-induced smells were not removed afterwards.
Only 9.7% of refactorings removed smells, according to Table 3.
Negative refactorings weremore frequent than positive refactorings
according to our three classification methods presented in Figure 1.
Stinky effects are more frequent than positive ones in the context
of both root-canal and floss refactorings as well.

Negative refactorings were more frequent than neutral ones
in the context of three refactoring types: Extract Method, Extract
Superclass and Extract Interface. Interestingly, Extract Method is
the most frequent type of refactoring (Table 3). Section 5 discusses
different patterns involving this refactoring type. Moreover, the
refactorings that involve multiple changes in a class hierarchy, such
as Extract Superclass and Extract Interface, tend to be negative. This
fact might indicate developers need more guidance on refactoring
class hierarchies even in the context of root-canal refactoring.

These results enable us to answer RQ1: refactorings made by
developers in real projects often do not remove code smells. On
the contrary, most of the refactorings are neutral or stinky. This
observation also prevails if we only consider refactoring types that,
according to their description in Fowler’s catalog [8], are explicitly
associated with specific code smell types addressed in our study.
For instance, the mechanics for applying Move Method, Pull Up
Method and Move Field refactorings are associated with smells that
represented methods or fields that are misplaced. The misplacement
of these members are captured by occurrences of either Feature
Envy, Divergent Change, Shotgun Surgery or God Class.

Our data suggest that most refactorings do not remove smells
even in the context of root-canal refactorings. There are possible
interpretations of this finding. First, critical design problems in a
program may not be related to code smells. If so, this fact may
explain why developers either neglect or introduce code smells

470

Understanding the Impact of Refactoring on Smells:
A Longitudinal Study of 23 Software Projects ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Figure 1: Results of the data collection phase

through refactoring. However, previous studies [17, 23, 24, 38] indi-
cate that design problems are often located in modules containing
two or more code smells. Second, similarly to previous studies, we
use metrics and thresholds to detect all smells. The proper choice
of metrics and thresholds may be sensitive to particular develop-
ers [11] and other project-specific factors [7]. As a consequence,
our detection of code smells may not reflect what developers truly
consider as smells. However, our previous studies involving devel-
opers [7, 11] suggest that heuristics used by developers are often
not essentially different from smell detection strategies adopted in
our study. Our understanding is that refactoring indeed ignores or
introduces technical debt in the source code. Finally, it may be the
case that our set of studied refactoring types are not among those
used by developers to actually remove design problems. Still, it is
troublesome that developers introduce smells through refactoring
regardless its type and tactic.

5 REFACTORING-SMELL PATTERNS
In order to address our second research question, we analyzed what
are the patterns emerging from the relationship between refactor-
ings and smells. Section 2.2 defines three categories of such patterns,
i.e., removal, non-removal and creational patterns. Section 5.1 fo-
cuses on discussing the removal and non-removal patterns, while
Section 5.2 discusses the creational (i.e., stinky) patterns.

We will focus on discussing patterns in which more than 15%
of the instances of a refactoring type was related to instances of a
specific smell type. For these patterns, we inspected all the pattern
instances in order to understand what happened in each case. In
particular, we also confirmed whether the refactoring was directly
related to the removal or introduction of the smell. This was an
important step as we had pattern instances occurring in the context
of either root-canal refactoring or floss refactoring.

For the non-removal and creational patterns, we also analyzed
the lifetime of the prevailing and introduced smells related to the
non-removal and creational patterns. We checked if such smells

– prevailing or emerging in commits involving one or more refac-
torings – were either removed or not in subsequent commits. We
considered subsequent commits all those ones performed until the
last commit of each project. Therefore, we were able to identify pre-
cisely when a particular code smell was removed. Our goal was to
understand whether the refactoring-related smell was (or not) tem-
porarily prevailing in the code because the developer was planning
to remove the smell in the next commits.

5.1 Removal vs. Non-Removal Patterns
Table 4 presents the cases of removal and non-removal patterns
observed. They are alphabetically ordered by the refactoring type.
Each row represents a removal and/or non-removal pattern involv-
ing a pair of refactoring type and smell type. The first column shows
the refactoring type, followed by the smell type in the second col-
umn. The next two columns present for each refactoring type the
percentage of its instances related to the removal (fourth column)
or prevalence (third column) of the corresponding code smell. Pat-
terns with an incidence strength higher than 15% are shown in bold.
The last column presents the percentage of root-canal refactoring
for each pattern. For instance, the first row informs that 37.5% of
the Extract Interface refactorings related to God Class, either by
non-removal or removal pattern, are root-canal refactoring.

At a first glance, it is already possible to observe there was a
much higher incidence of non-removal patterns than removal ones.
The percentages of non-removal patterns (third column) are often
higher than their removal counterparts. Thus, we can also conclude
there are specific types of refactorings tending to consistently af-
fect a particular type of smell. However, those refactorings more
frequently are unsuccessful (non-removal) rather than successful
(removal) with respect to that particular smell type. For instance,
Extract Method refactoring was often targeted at methods hosting
a Feature Envy smell. However, as expected, most of those Extract
Method refactorings could not remove this smell. Table 4 shows
42.6% (against 11%) of such refactorings touched this smell, but they
were not able to eliminate it.

After analyzing these pattern instances, we confirmed that proper
action of developers should also include moving (not only extract-
ing) those Feature Envy smells as methods to other classes. However,
the vast majority of those extracted methods (higher than 95% of its
instances) were neither moved to neighbor classes in subsequent
commits. In fact, those (11%) of successful Extract Method refactor-
ings were performed in conjunction with other method-moving
refactorings in the same commit, such as Move Method, Pull Up
Method or Push Down Method refactorings.

Another interesting observation is that the God Class smell was
the most frequent target of removal or non-removal refactorings.
In fact, this smell dominates the rows of Table 4. Several refactoring
types were often related to changes moving out members from
God Class smells. Two of the refactoring types – namely, Move
Method (23%) andMove Field (27%) refactorings – were significantly
successful in contributing to the removal of aGod Class smell within
a commit. However, even for these refactoring types, there was
higher incidence of non-removal patterns. Table 4 shows 51.3% and
29.4% of Move Method and Move Field refactorings touched God
Class smell but were not sufficient to eliminate it, independently if

471

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa,

R. de Mello, B. Fonseca, M. Ribeiro, and A. Chávez

they were part of root-canal or floss refactorings. Those refactorings
were often performed in conjunction with other member-moving
refactorings in the same commit, but were not sufficient to remove
God Classes. In 99% of the cases, the prevailing God Class smell were
not removed in the successive commits either. There were only
two refactoring-smell patterns that more predominantly removed
(rather than not) the code smell. They were patterns involving
the Push Down Method refactoring and Lazy Class smell (52%) and
Refused Bequest smell (23%).

We can observe a non-ignorable frequency of root-canal refactor-
ings spread across the patterns in Table 4. Even when the root-canal
frequency is as high as 50%, the developers are not able to remove
the code smell. Since the refactorings belonging to the patterns
could be just the first step towards the code smell removal, we
computed the code smells’ lifetime after the refactoring. In 95%
of the cases, the code smells were not removed. This shows that,
even when developers refactor purely to improve the code struc-
ture (root-canal), they do not succeed on removing the code smells.

Table 4: Removal and non-removal patterns

Refactoring Code Smell Non-Removal Removal Root-Canal
Extract Interface God Class 20.3% 2% 37.5%
Extract Method Divergent Change 34.6% 7% 25%
Extract Method Feature Envy 42.6% 11% 28.3%
Extract Method God Class 48.6% 0% 26.2%
Move Field God Class 29.4% 27% 48%
Move Method God Class 51.3% 23% 8.0%
Pull Up Field God Class 44.7% 8% 76.1%
Pull Up Method God Class 61.3% 10% 2.3%
Push Down Field God Class 55.7% 12% 57.1%
Push Down Method God Class 54.3% 15% 22.2%
Push Down Method Lazy Class 2.6% 52% 11.1%
Push Down Method Refused Bequest 9.2% 23% 50%

5.2 Creational Patterns
Interesting data also emerged from creational patterns detected in
our dataset. We divided these patterns into three groups [8] consid-
ering the purpose of the refactoring type: (i) refactorings targeted at
improving generalization; (ii) refactorings responsible for moving
features between objects; and (iii) refactorings targeted at restruc-
turing members of a class. The following subsections respectively
present and discuss creational patterns involving refactorings in
these groups. Table 5 presents all creational patterns found with
the same structure presented in Table 4.

5.2.1 Generalization Patterns. Refactorings dealing with gen-
eralization were often related to the creation of God Class and
Speculative Generality smells. We can observe in Table 5 that Pull
Up Method, and Pull Up Field refactorings are related to the creation
ofGod Class smells in 28%, and 61% of the cases, respectively. Extract
Superclass refactoring creates the Speculative Generality smell in
68% of the cases, while 34% of the Pull Up Field refactoring instances
introduce this same smell in the target superclass. What is more
troublesome was the fact that more than 95% of such introduced
smells were not removed in successive refactorings.

A typical example of generalization-related creational pattern
can be illustrated by the case involving the DefaultProjectListener
class from the Xerces project (commit 002901b). The DefaultPro-
jectListener class is the default implementation of a listener that

Table 5: Creational patterns

Refactoring Code Smell Creational Root-Canal

Extract Method Divergent Change 40.5% 24.7%
Extract Method Feature Envy 63.8% 32.1%
Extract Superclass Lazy Class 33.2% 17.8%
Extract Superclass Refused Bequest 20.3% 0%
Extract Superclass Spec. Generality 68.3% 0%
Move Method Complex Class 15% 0%
Move Method God Class 35% 17.6%
Move Method Lazy Class 16% 16%
Pull Up Field God Class 61.2% 2%
Pull Up Field Spec. Generality 34.1% 90.2%
Pull Up Method God Class 28.3% 2.9%
Pull Up Method Spaghetti Code 23.2% 0%

emulates the old ant listener notifications. Extract Superclass refac-
toring was applied on DefaultProjectListener class, thereby creat-
ing the AbstractProjectListener class from it. However, the new
abstract class did not seem to justify the refactoring. There was
only one class that extended AbstractProjectListener class, i.e. the
DefaultProjectListener class itself. Thus, the refactoring created the
AbstractProjectListener class with a Speculative Generality smell.
Moreover, this refactoring had another negative consequence on
the affected classes as it introduced another code smell. The De-
faultProjectListener class overrides all the methods defined on the
AbstractProjectListener class. Consequently, the DefaultProjectLis-
tener class became affected by a Refused Bequest smell. One of the
reasons for this problem is that all the bodies of the methods defined
on the AbstractProjectListener class are empty; they do not have
any implementation. Ideally, the AbstractProjectListener abstract
class should have been instead defined as an interface. Moreover,
all these smells were not removed in successive commits, thereby
affecting other listener subclasses created latter. Therefore, in this
example, the Extract Superclass refactoring is responsible for creat-
ing an instance of a generalization-related creational pattern and
propagating a smelly structure to other classes.

5.2.2 Feature-Moving Patterns. Refactorings aiming at moving
features between objects were also part of our catalog of detected
creational patterns. Move Method refactorings were related to the
creation of three types of smells. This refactoring created God
Class, Complex Class, and Lazy Class smells in 35%, 15%, and 16% of
the cases, respectively. Interestingly, this type of refactoring was
amongst the most common ones in a previous study [22]. When
analyzing all these pattern instances, we confirmed that developers
were consistently creating smells through Move Method refactor-
ings in the target classes (i.e. those receiving the moved methods)
without removing those smells in the source classes. Again, the
vast majority of these introduced smells (more than 98%) prevailed
in the successive commits. This observation shows that tooling
support should warn developers about the risks related to such
recurring creational patterns.

A typical case of creational feature-moving pattern can be illus-
trated by refactoring changes affecting two classes from the Ar-
goUML project. The generateMessageNumber method was moved

472

Understanding the Impact of Refactoring on Smells:
A Longitudinal Study of 23 Software Projects ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

from the GeneratorDisplay class to the MessageNotationUml class.
Before the refactoring, the GeneratorDisplay class had three types
of code smells, namely God Class, Complex Class and Refused Be-
quest smells. On the other hand, the MessageNotationUml class had
only one code smell: Refused Bequest. After the refactoring, the
MessageNotationUml class received the other three types of code
smells that were affecting the GeneratorDisplay class. However, the
GeneratorDisplay class continued having the three types of code
smells. That is, in addition to introducing code smells in the target
class,Move Method refactoring did not remove the code smells from
the source class. To make matters worse, Move Method refactoring
also introduced a fifth type of code smell that was not affecting any
one of the both classes before. It introduced a Spaghetti Code smell
since the moved method interacts, through a method call, with an
existing method of the MessageNotationUml class that was long (in
terms of LOC). This Move Method refactoring instance is a critical
one since it is responsible for creating two out of three relevant
code smells (God Class and Complex Class smells), and it is also
responsible to introduce the Spaghetti Code smell.

5.2.3 Method Extraction Patterns. In the last category, we only
found creational patterns involving the Extract Method refactor-
ing. This refactoring type was often related to the creation of two
types of smells: Divergent Change smell in 41% of the cases, and
Feature Envy smell in 64% of the cases. However, when we analyzed
these pattern instances, we observed that most of them occurred
in the context of: (i) floss refactorings, or (ii) composite root-canal
refactorings. Therefore, Extract Method refactoring was often not
the only factor potentially contributing to the emergence of those
code smells. Still, the high incidence of such creational patterns
may warn developers that Extract Method refactorings should be
often followed by Move Method refactorings in order to eliminate
possibly prevailing Feature Envy or Divergent Change smells.

The FixCRLF class from the Apache Ant project had the Complex
Class smell. Also, the execute method from this class had two code
smells, namely Feature Envy and Long Method smells. This method
had two functionalities: executing a scanning task on a source code
folder and processing files found in the folder. Through the Extracted
Method refactoring, the execute method was split into a second
method called processFile. After the refactoring, the execute method
had only the Feature Envy smell while the processFile method kept
both smells: Feature Envy and Long Method smells. However, it
was also introduced a Divergent Change smell in the processFile
method. Furthermore, it was introduced another code smell in
the FixCRLF class. After the refactoring, it also had a Spaghetti
Code smell. In this example, the Extracted Method refactoring was
responsible for creating an instance of a method extraction pattern.
Also, this refactoring contributed to introduce a code smell at class
level, Spaghetti Code, which did not exist in the class before the
refactoring, and together with the Complex Class smell, they can
decrease the reusability of the system.

Table 5 presents the percentage of root-canal refactorings for
each creational pattern. Considering all instances involved in those
patterns, 26.5% are root-canal refactorings. This is an alarming rate.
Developers introduce smells when refactoring even when they are
performing solely structural-improvement activities. To make the
matter worse, this behavior occurs consistently between specific

refactoring-smell pairs. This non-tolerable rate presented indicates
developers might need proper support during refactoring to avoid
structural degradation even when they, clearly, want to improve
the structure via root-canal refactoring.

6 THREATS TO VALIDITY
Internal Validity. The data collection using the Refactoring Miner
represents a threat to internal validity because it may find false
positives. To minimize this threat and check the tool’s precision, we
randomly select a sample of 2,584 refactorings and manually vali-
date them. Section 3.2.4 presents the procedure used to estimate the
precision of this tool in our dataset. We observed a high precision
for each refactoring type, with a median of 88.36%. The precision
found in all refactoring types are close to the standard deviation
(7.73). By applying the Grubb outlier test (alpha=0.05) we could
not find any outlier, indicating that no refactoring type is strongly
influencing the median precision found. Thus, the results found in
the sample analyzed represent a key factor to provide confidence
in the results reported in this work.

We could not reach the developers to ask their intentions (root-
canal or floss) in all refactorings detected. Therefore, we performed
a manual validation analysis to check whether each refactoring
instance was part of a root-canal or floss refactoring. This manual
validation also represents a threat to internal validity. To mitigate
this threat, part of the sample was validated by two researches. The
third researcher solved cases of conflict.

External Validtiy. The selection of subjects in empirical studies
is a recurrent external threat to validity. We mitigate this threat by
establishing a process to sample a set of valid projects randomly
from GitHub. As a result, we yield relevant Java projects with
an interesting diversity of structure and size. Moreover, we also
included in the sample the three projects used by Bavota et al. [3],
so that we could contrast our findings with theirs (Section 7).

7 RELATEDWORK
Elements touched by refactoring. Bavota et al. [3] mined the
evolution history of 3 Java open source projects to investigate if
refactorings occur on code elements that certain indicators suggest a
need for refactoring. Their considered indicators include structural
quality metrics and the presence of smells. They also measure
the effectiveness of refactorings regarding their ability to remove
smells. According to their results, quality metrics do not show a
clear relationship with refactoring and 42% of the refactorings are
applied on smelly elements, in which only 7% of them remove
smells. Different from Bavota et al., our results indicate that most of
the refactorings (80%) are performed in elements with code smells,
in which 9.7% of them remove smells and 33.3% induce new smells.

The procedure that we followed may explain why our results
are different from the one presented by Bavota et al.. We collected
refactorings between commits while they collected refactorings
using only the projects’ major versions. Usually, between two ma-
jor versions, developers perform significant changes in the source
code structure. Therefore, they probably missed refactorings when
they followed this procedure since refactorings might be hidden or
unidentifiable. In our study, we mitigate this threat by collecting the
refactorings between consecutive commits. In summary, our study

473

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa,

R. de Mello, B. Fonseca, M. Ribeiro, and A. Chávez

improves several aspects of the study reported by Bavota et al.. First,
we analyzed 23 projects while they analyzed only 3. Second, we
collected refactorings in consecutive commits. Third, we used a
refactoring detection tool (Refactoring Miner [31]) with a good pre-
cision rather than the well-known Ref-Finder’s low precision [28].
In addition, we evaluated if and when refactorings are stinky by
introducing new smells in the context of both root-canal and floss
refactoring. We have also characterized refactoring-smell patterns.

Motivations to refactor. Our data showed that most of refac-
torings (80%) touch smelly elements. Even though the specific moti-
vation of the developers is unknown, we actually observed a similar
behavior when developers apply both root-canal and floss refac-
toring. Mainly in the former case, one would expect developers
explicitly intend to improve code structure. Regarding developers’
motivation, Silva et al. [27] investigated the reasons that drive de-
velopers to refactor their code. They identified refactorings on 748
Java projects in the GitHub repository. Then, they asked develop-
ers why they performed the identified refactorings. Their results
indicate that fixing a bug or changing the requirements, such as
feature additions, mainly drives refactorings. Their results show
that the refactored code may contain code smells, although devel-
opers did not mention it explicitly as the intention to refactor. On
the other hand, the study of Yamashita & Moonen [37] reports that
developers often consider smells as critical.

Benefits to refactor. Kim et al. [14] conducted a three-folded
investigation at Microsoft about refactoring through a survey, in-
terviews, and data analysis of the Windows version history. Their
results indicate that the refactoring in practice seems to differ from
the rigorous definition of behavior-preservation transformation
found in the literature [8]. This result provides us an additional
support to investigate floss refactorings since developers also per-
form non-behavior-preservation transformations while refactoring.
The survey participants also reported the benefits they have ob-
served from refactoring. The twomost cited benefits were improved
readability and maintainability. Although the participants did not
mention code smells, the presence of code smells affects negatively
the two benefits they claim they want to achieve [12, 34, 38].

Introduction of code smells. Tufano et al. [32] investigated
the circumstances that led to the introduction of smells, not specifi-
cally in the context of software refactoring. The authors analyzed
issues and tags associated with commits that introduced smells
on open source projects. Their results indicate that most of code
smells are introduced during enhancement activities (between 60%
and 66%). They also found that between 4% and 11% of the smell-
introducing commits were tagged as refactoring. However, our
study goes beyond: our findings indicate that stinky refactorings
are frequent: refactorings are related to the introduction of code
smells in 33.3% of the cases. We also characterized and quantified
typical refactoring-smell patterns, and observed that certain stinky
patterns are very frequent.

Negative refactorings. We conducted a preliminary study [5]
that analyzes how often the commonly-used refactoring types affect
the density of 5 types of smells along the version histories of 25
projects. Our findings are based on the analysis of 2,635 refactorings
distributed in 11 different types. Surprisingly, 95.1% of refactorings
are neutrals. Only 2.24% of refactoring were positive, and 2.66%
negatives. Our new results show that negative refactorings are

much more frequent. This discrepancy between the studies can be
explained by the nature of the projects. In the preliminary study,
we considered only small projects with fewer developers.

8 CONCLUSIONS
We conducted a study aiming to understand the relationship be-
tween refactorings and code smells in 23 projects. First, we have
observed that although refactorings touch smelly elements, they are
often smell-neutral. Second, stinky refactorings occur more often
than positive refactorings. Stinky refactorings were also surpris-
ingly frequent in root-canal refactorings, i.e., when developers are
solely focused on improving the program structure. These findings
suggest developers need more guidance to fully remove a code
smell once they restructure a smelly element.

In order to better guide developers, we have investigated which
recurring refactoring-smell pairs tend to produce stinky, neutral or
positive effects. We achieved this goal by revealing and characteriz-
ing removal, non-removal and creational patterns. We found a wide
range of creational and non-removal patterns, which were much
more frequent than positive patterns. Extract Method is a refac-
toring type frequently involved in both stinky and non-removal
patterns. Moreover, we decomposed creational patterns in three
groups. The first group included refactorings dealing with gen-
eralization: they were often related to the creation of God Class
and Speculative Generality smells. The second group represents
feature-moving refactorings, which induced the creation of God
Class, Complex Class, and Lazy Class smells. Finally, the last group
comprises the Extract Method refactorings, which were related to
the creation of Divergent Change and Feature Envy smells.

The aforementioned findings can help practitioners and tool
engineers. Practitioners using refactoring are now better informed
of when they may typically introduce neutral or stinky refactorings
in their programs. Moreover, a refactoring assistance tool can be
built in order to: (i) detect when developers performed refactoring
in a commit, and (ii) depending on the refactoring characteristics
(e.g. occurrence of a root-canal refactoring), immediately produce
warnings or recommendations for the developer. For example, a
refactoring assistant could warn developers of an emerging God
Class (related to a stinky refactoring) and suggest her to move the
class member to a more appropriate class.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions. This work is funded by
CAPES/Procad (175956, 117875), CNPq (309884/2012-8, 483425/2013-
3, 477943/2013-6, 465614/2014-0, 308380/2016-9), and FAPERJ (22520
7/2016, 102166/2013).

REFERENCES
[1] R. Arcoverde, I. Macia, A. Garcia, and A. von Staa. 2012. Automatically detecting

architecturally-relevant code anomalies. In Proceedings of the 3rd International
Workshop on Recommendation Systems for Software Engineering (RSSE). IEEE
Computer Society, Washington, DC, USA, 90–91. https://doi.org/10.1109/RSSE.
2012.6233419

[2] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano
Di Penta, Rocco Oliveto, and Orazio Strollo. 2012. When Does a Refactoring
Induce Bugs? An Empirical Study. In Proceedings of the 12th International Working
Conference on Source Code Analysis and Manipulation (SCAM ’12). IEEE Computer
Society, Washington, DC, USA, 10. https://doi.org/10.1109/SCAM.2012.20

474

https://doi.org/10.1109/RSSE.2012.6233419
https://doi.org/10.1109/RSSE.2012.6233419
https://doi.org/10.1109/SCAM.2012.20

Understanding the Impact of Refactoring on Smells:
A Longitudinal Study of 23 Software Projects ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

[3] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and
Fabio Palomba. 2015. An experimental investigation on the innate relationship
between quality and refactoring. Journal of Systems and Software 107 (2015), 1 –
14. https://doi.org/10.1016/j.jss.2015.05.024

[4] Diego Cedrim. 2017. Experiment data of the research. http://diegocedrim.github.
io/fse-2017-data/. (2017). [Online; accessed 6-july-2017].

[5] Diego Cedrim, Leonardo da Silva Sousa, Alessandro F. Garcia, and Rohit Gheyi.
2016. Does refactoring improve software structural quality? A longitudinal
study of 25 projects. In Proceedings of the 30th Brazilian Symposium on Software
Engineering. ACM, New York, NY, USA, 73–82. https://doi.org/10.1145/2973839.
2973848

[6] Diego Cedrim and Leonardo Sousa. 2017. Organic. https://github.com/
diegocedrim/organic. (2017). [Online; accessed 6-july-2017].

[7] Manuele Ferreira, Eiji Barbosa, Isela Macia, Roberta Arcoverde, and Alessandro
Garcia. 2014. Detecting Architecturally-relevant Code Anomalies: A Case Study
of Effectiveness and Effort. In Proceedings of the 29th Annual ACM Symposium
on Applied Computing (SAC ’14). ACM, New York, NY, USA, 1158–1163. https:
//doi.org/10.1145/2554850.2555036

[8] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. 1999.
Refactoring: Improving the Design of Existing Code (1 ed.). Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA. 464 pages.

[9] Kenji Fujiwara, Kyohei Fushida, Norihiro Yoshida, and Hajimu Iida. 2013. As-
sessing Refactoring Instances and the Maintainability Benefits of Them from
Version Archives. In Product-Focused Software Process Improvement. Vol. 7983.
Springer Publishing Company, Incorporated, Berlin, Germany, 313–323. https:
//doi.org/10.1007/978-3-642-39259-7_25

[10] Alessandro Gurgel, Isela Macia, Alessandro Garcia, Arndt von Staa, Mira Mezini,
Michael Eichberg, and Ralf Mitschke. 2014. Blending and Reusing Rules for
Architectural Degradation Prevention. In Proceedings of the 13th International
Conference on Modularity (MODULARITY ’14). ACM, New York, NY, USA, 61–72.
https://doi.org/10.1145/2577080.2577087

[11] Mario Hozano, Alessandro Garcia, Nuno Antunes, Baldoino Fonseca, and Evandro
Costa. 2017. Smells Are Sensitive to Developers!: On the Efficiency of (Un)Guided
Customized Detection. In Proceedings of the 25th International Conference on
Program Comprehension (ICPC ’17). IEEE Press, Piscataway, NJ, USA, 110–120.
https://doi.org/10.1109/ICPC.2017.32

[12] Cory J. Kapser andMichaelW. Godfrey. 2008. "Cloning Considered Harmful" Con-
sidered Harmful: Patterns of Cloning in Software. Empirical Software Engineering
13, 6 (Dec. 2008), 645–692. https://doi.org/10.1007/s10664-008-9076-6

[13] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. 2012. An exploratory study of the impact of antipatterns on class
change- and fault-proneness. Empirical Software Engineering 17, 3 (2012), 243–
275. https://doi.org/10.1007/s10664-011-9171-y

[14] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A Field
Study of Refactoring Challenges and Benefits. In Proceedings of the 20th Interna-
tional Symposium on the Foundations of Software Engineering (FSE ’12). ACM, New
York, NY, USA, Article 50, 11 pages. https://doi.org/10.1145/2393596.2393655

[15] Michele Lanza and Radu Marinescu. 2010. Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve the Design of Object-
Oriented Systems (1st ed.). Springer Publishing Company, Incorporated, Berlin,
Germany.

[16] Isela Macia. 2013. On the detection of architecturally relevant code anomalies in
software systems. Ph.D. Dissertation. Pontifical Catholic University of Rio de
Janeiro.

[17] Isela Macia, Roberta Arcoverde, Alessandro Garcia, Christina Chavez, and Arndt
von Staa. 2012. On the Relevance of Code Anomalies for Identifying Architec-
ture Degradation Symptoms. In Proceedings of the 16th European Conference on
Software Maintenance and Reengineering (CSMR ’12). IEEE Computer Society,
Washington, DC, USA, 277–286. https://doi.org/10.1109/CSMR.2012.35

[18] Isela Macia, Alessandro Garcia, Christina Chavez, and Arndt von Staa. 2013.
Enhancing the Detection of Code Anomalies with Architecture-Sensitive Strate-
gies. In Proceedings of the 17th European Conference on Software Maintenance
and Reengineering. IEEE Computer Society, Washington, DC, USA, 177–186.
https://doi.org/10.1109/CSMR.2013.27

[19] Isela Macia, Joshua Garcia, Daniel Popescu, Alessandro Garcia, Nenad Medvi-
dovic, and Arndt von Staa. 2012. Are Automatically-detected Code Anomalies
Relevant to Architectural Modularity?: An Exploratory Analysis of Evolving
Systems. In Proceedings of the 11th Annual International Conference on Aspect-
oriented Software Development (AOSD ’12). ACM, New York, NY, USA, 167–178.
https://doi.org/10.1145/2162049.2162069

[20] Isela Macia Bertran, Alessandro Garcia, and Arndt von Staa. 2011. An Exploratory
Study of Code Smells in Evolving Aspect-oriented Systems. In Proceedings of the
10th International Conference on Aspect-oriented Software Development (AOSD ’11).
ACM, New York, NY, USA, 203–214. https://doi.org/10.1145/1960275.1960300

[21] Leandra Mara, Gustavo Honorato, Francisco Dantas Medeiros, Alessandro Garcia,
and Carlos Lucena. 2011. Hist-Inspect: A Tool for History-sensitive Detection of
Code Smells. In Proceedings of the 10th International Conference on Aspect-oriented
Software Development Companion (AOSD ’11). ACM, New York, NY, USA, 65–66.

https://doi.org/10.1145/1960314.1960335
[22] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2009. How We

Refactor, and HowWe Know It. In Proceedings of the 31st International Conference
on Software Engineering (ICSE ’09). IEEE Computer Society, Washington, DC,
USA, 287–297. https://doi.org/10.1109/ICSE.2009.5070529

[23] Willian Oizumi, Alessandro Garcia, Thelma Colanzi, Manuele Ferreira, and Arndt
von Staa. 2015. On the relationship of code-anomaly agglomerations and archi-
tectural problems. Journal of Software Engineering Research and Development 3
(2015), 11.

[24] Willian Oizumi, Alessandro Garcia, Leonardo da Silva Sousa, Bruno Cafeo, and
Yixue Zhao. 2016. Code Anomalies Flock Together: Exploring Code Anomaly
Agglomerations for Locating Design Problems. In Proceedings of the 38th Interna-
tional Conference on Software Engineering (ICSE ’16). ACM, New York, NY, USA,
440–451. https://doi.org/10.1145/2884781.2884868

[25] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and An-
drea De Lucia. 2014. Do They Really Smell Bad? A Study on Developers’ Percep-
tion of Bad Code Smells. In Proceedings of the 30th IEEE International Conference
on Software Maintenance and Evolution. IEEE Computer Society, Washington, DC,
USA, 101–110. https://doi.org/10.1109/ICSME.2014.32

[26] Jacek Ratzinger, Thomas Sigmund, and Harald C. Gall. 2008. On the Relation of
Refactorings and Software Defect Prediction. In Proceedings of the 2008 Interna-
tional Working Conference on Mining Software Repositories (MSR ’08). ACM, New
York, NY, USA, 35–38. https://doi.org/10.1145/1370750.1370759

[27] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We Refac-
tor? Confessions of GitHub Contributors. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016). ACM,
New York, NY, USA, 858–870. https://doi.org/10.1145/2950290.2950305

[28] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. 2013. Automated Behavioral
Testing of Refactoring Engines. IEEE Transactions on Software Engineering 39, 2
(Feb. 2013), 147–162. https://doi.org/10.1109/TSE.2012.19

[29] Konstantinos Stroggylos and Diomidis Spinellis. 2007. Refactoring–Does It
Improve Software Quality?. In Proceedings of the 5th International Workshop on
Software Quality (WoSQ ’07). IEEE Computer Society, Washington, DC, USA, 10–.
https://doi.org/10.1109/WOSQ.2007.11

[30] Nikolaos Tsantalis. 2017. RefactoringMiner github page. https://github.com/
tsantalis/RefactoringMiner. (2017). [Online; accessed 6-july-2017; version 0.2.0].

[31] Nikolaos Tsantalis, Victor Guana, Eleni Stroulia, and Abram Hindle. 2013. A
Multidimensional Empirical Study on Refactoring Activity. In Proceedings of
the 2013 Conference of the Center for Advanced Studies on Collaborative Research
(CASCON ’13). IBM Corp., Riverton, NJ, USA, 132–146. http://dl.acm.org/citation.
cfm?id=2555523.2555539

[32] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2015. When and Why Your
Code Starts to Smell Bad. In Proceedings of the 37th International Conference
on Software Engineering (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 403–414.
http://dl.acm.org/citation.cfm?id=2818754.2818805

[33] Zhenchang Xing and Eleni Stroulia. 2005. UMLDiff: An Algorithm for Object-
oriented Design Differencing. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’05). ACM, New York, NY,
USA, 54–65. https://doi.org/10.1145/1101908.1101919

[34] Aiko Yamashita. 2014. Assessing the Capability of Code Smells to Explain
Maintenance Problems: An Empirical Study Combining Quantitative and Qual-
itative Data. Empirical Software Engineering 19, 4 (Aug. 2014), 1111–1143.
https://doi.org/10.1007/s10664-013-9250-3

[35] Aiko Yamashita and Steve Counsell. 2013. Code smells as system-level indicators
of maintainability: An empirical study. Journal of Systems and Software 86, 10
(2013), 2639 – 2653. https://doi.org/10.1016/j.jss.2013.05.007

[36] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?
An exploratory survey.. In Proceedings of the 20th Working Conference on Re-
verse Engineering, Ralf Lämmel, Rocco Oliveto, and Romain Robbes (Eds.). IEEE
Computer Society, Washington, DC, USA, 242–251.

[37] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?
An exploratory survey. In Proceedings of the 20th Working Conference on Reverse
Engineering. IEEE Computer Society, Washington, DC, USA, 242–251. https:
//doi.org/10.1109/WCRE.2013.6671299

[38] Aiko Yamashita and Leon Moonen. 2013. Exploring the Impact of Inter-smell
Relations on Software Maintainability: An Empirical Study. In Proceedings of the
35th International Conference on Software Engineering (ICSE ’13). IEEE Press, Pis-
cataway, NJ, USA, 682–691. http://dl.acm.org/citation.cfm?id=2486788.2486878

[39] Aiko Yamashita and Leon Moonen. 2013. To What Extent Can Maintenance Prob-
lems Be Predicted by Code Smell Detection? - An Empirical Study. Information
and Software Technology 55, 12 (Dec. 2013), 2223–2242.

475

https://doi.org/10.1016/j.jss.2015.05.024
http://diegocedrim.github.io/fse-2017-data/
http://diegocedrim.github.io/fse-2017-data/
https://doi.org/10.1145/2973839.2973848
https://doi.org/10.1145/2973839.2973848
https://github.com/diegocedrim/organic
https://github.com/diegocedrim/organic
https://doi.org/10.1145/2554850.2555036
https://doi.org/10.1145/2554850.2555036
https://doi.org/10.1007/978-3-642-39259-7_25
https://doi.org/10.1007/978-3-642-39259-7_25
https://doi.org/10.1145/2577080.2577087
https://doi.org/10.1109/ICPC.2017.32
https://doi.org/10.1007/s10664-008-9076-6
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1109/CSMR.2012.35
https://doi.org/10.1109/CSMR.2013.27
https://doi.org/10.1145/2162049.2162069
https://doi.org/10.1145/1960275.1960300
https://doi.org/10.1145/1960314.1960335
https://doi.org/10.1109/ICSE.2009.5070529
https://doi.org/10.1145/2884781.2884868
https://doi.org/10.1109/ICSME.2014.32
https://doi.org/10.1145/1370750.1370759
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1109/TSE.2012.19
https://doi.org/10.1109/WOSQ.2007.11
https://github.com/tsantalis/RefactoringMiner
https://github.com/tsantalis/RefactoringMiner
http://dl.acm.org/citation.cfm?id=2555523.2555539
http://dl.acm.org/citation.cfm?id=2555523.2555539
http://dl.acm.org/citation.cfm?id=2818754.2818805
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1007/s10664-013-9250-3
https://doi.org/10.1016/j.jss.2013.05.007
https://doi.org/10.1109/WCRE.2013.6671299
https://doi.org/10.1109/WCRE.2013.6671299
http://dl.acm.org/citation.cfm?id=2486788.2486878

	Abstract
	1 Introduction
	2 Concepts and Motivation
	2.1 Refactoring Classification
	2.2 Refactoring-Smell Patterns

	3 Study Planning
	3.1 Research Questions
	3.2 Study Phases

	4 Refactoring and Smells
	4.1 Smell-Neutral Refactorings are Common
	4.2 Stinky Refactorings

	5 Refactoring-Smell Patterns
	5.1 Removal vs. Non-Removal Patterns
	5.2 Creational Patterns

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

